
Architecture-Parametric Timing Analysis

Jan Reineke, Johannes Doerfert
Department of Computer Science

Saarland University
Saarbrücken, Germany

Email: {reineke|doerfert}@cs.uni-saarland.de

Abstract—Platforms are families of microarchitectures that
implement the same instruction set architecture but that differ in
architectural parameters, such as frequency, memory latencies,
or memory sizes. The choice of these parameters influences
execution time, implementation cost, and energy consumption.

In this paper, we introduce the first general framework for
architecture-parametric timing analysis (APTA). APTA computes
an expression that bounds the worst-case execution time (WCET)
of a program in terms of architectural parameters. This enables
to configure a platform, at design or even at run time, in a
way that is guaranteed to meet all deadlines, while minimizing
implementation cost and/or energy consumption.

We demonstrate the feasibility of our approach by imple-
menting APTA for a precision-timed (PRET) platform and by
evaluating our implementation on Mälardalen benchmarks.

I. INTRODUCTION

To support a wide range of application scenarios, hardware
manufacturers develop platforms, i.e., families of microarchitec-
tures that implement the same instruction set architecture (ISA)
and follow a common “microarchitectural template” but that
differ in a number of architectural parameters. Such platforms
are configurable, both statically at design time, as well as
dynamically at run time. As an example, a system designer
may, at design time, configure the processor frequency, the
cache size, the cache associativity, the latency of main memory,
the inter-connect topology, bandwidth, and arbitration policy.

At run time, for example, to trade-off performance against
power consumption, techniques like dynamic resizing of
buffers/caches, dynamic frequency/voltage scaling (DVFS, such
as PowerNow in AMD and SpeedStep in Intel), and dynamic
power management (such as ACPI), etc. have been adopted.
Configuration at run time is important for building sustainable
real-time embedded systems. Moreover, as processor charac-
teristics may change over time, e.g., the maximal sustainable
frequency may drop due to hardware degradation or transient
faults, one should be able to reconfigure the system at run time
to cope with such changes in system characteristics.

Further, there is a trend to transition from federated architec-
tures, in which features are implemented on physically separated
platforms, to integrated architectures [1], [2] that implement
multiple features on a single platform. This transition has the po-
tential to significantly reduce the amount of required resources,
energy consumption, and weight, which is an important aspect
in avionics. As more and more features are packed onto a
single platform, integrated architectures require more powerful
microarchitectures: they necessitate the use of multi- or even
many-core architectures. Such architectures feature shared

resources, such as caches, interconnect, and memory controllers.
Uncontrolled sharing of these resources yields interference that
can be detrimental to performance and that is extremely difficult
or even impossible to predict statically. Thus, such architectures
can only be used, if different tasks running simultaneously on
different cores are temporally isolated [3], [4] from each other.
This is achieved by partitioning resources in space and time.
For flexibility and efficiency, the partitioning of resources is
not fixed once and for all by the manufacturer, but configurable
at run time. A key challenge to the efficient use of integrated
architectures is thus to determine how to partition the shared
resources to guarantee each application’s timing constraints.

As the above observations demonstrate, today’s platforms
are increasingly configurable. Different configurations, i.e.,
different choices of parameter values, offer different tradeoffs
between implementation cost, performance, and energy
consumption. Thus, there is a need and an opportunity to find
configurations that meet an application’s performance needs,
while minimizing energy consumption and implementation cost.

In the context of real-time systems, an application’s
performance needs are characterized by constraints on its
timing behavior. Worst-case execution time (WCET) and
schedulability analyses are traditionally used to verify that
all timing constraints of an application are met by a given
execution platform. Existing WCET and schedulability analyses,
however, assume that all configuration choices of the platform
have already been made, and that the configuration remains
fixed at run time. Yet, to safely configure a platform at design
or run time one needs to know how different configuration
choices affect an application’s worst-case execution time.

To this end, we introduce a framework for architecture-
parametric timing analysis (APTA). APTA computes an ex-
pression that bounds the WCET of a program in terms of
architectural parameters. In contrast to existing WCET analyses,
APTA applies to yet unconfigured platforms, and it reveals how
an application’s WCET depends on the platform’s parameters.
APTA can thus be a basis for an informed configuration of the
platform, at design and even at run time.

To realize APTA, we follow a black-box approach, sketched
in Figure 1. In this approach, we use a black-box WCET anal-
ysis to obtain bounds on the WCET of a given software binary
for several specific parameter valuations. As existing WCET
analyses are usually configurable w.r.t. platform parameters, the
development of such a black box is not a research challenge.
The bounds computed by the black box are then generalized to
obtain a parametric WCET formula that applies to all possible
parameter valuations of the platform. Two challenges arise:

mailto:reineke@cs.uni-saarland.de
mailto:doerfert@cs.uni-saarland.de

Parameter
Valuation 1

Parameter
Valuation 2

Parameter
Valuation 3

Parameter
Valuation 4

Parameter
Valuation 5

Parameter
Valuation 1

Parameter
Valuation 2

Parameter
Valuation 3

Parameter
Valuation 4

Parameter
Valuation 5

WCET 1

WCET 2

WCET 3

WCET 4

WCET 5

Black-Box
WCET

Analysis

Generalize
from

Examples

Parametric
WCET

Software
Binary

2. Where to sample the
black box?

1. How to generalize
from examples?

Fig. 1. Black-box approach to architecture-parametric timing analysis.

1) How to ensure soundness, i.e., how to generalize
the examples provided by the black box to a correct
parametric bound?

2) How to ensure precision, i.e., at which parameter
valuations should the black box be sampled to obtain a
parametric bound that is close to the actual WCET?

To solve the “soundness challenge”, we identify sufficient
conditions on the platform that enable sound generalization
in Section III. Given a platform that satisfies these conditions,
in Section IV, we then go on to show how to generalize
from examples using parametric linear programming, which
is introduced in Section II.

The precision of the obtained parametric bound critically
depends on where the black box is sampled. We address
the “precision challenge” by introducing a refinement loop
in Section V that intelligently chooses parameter valuations
to sample. The refinement loop can be shown to terminate
and deliver a parametric bound that is provably precise. The
required precision is an input to the algorithm.

As a proof of concept, we instantiate our analysis framework
for a precision-timed (PRET) platform. We arrive at this
platform by parameterizing the PTARM [5] microarchitecture,
a predictable multi-threaded microarchitecture, which has been
realized in FPGA. In particular, we make the processing
frequency, the scratchpad and DRAM latencies, as well as
the instruction and data scratchpad sizes parameters. We
successfully apply the new analysis to a set of Mälardalen
benchmarks. The proof-of-concept demonstrates that (a) the
requirements for APTA can be met by actual platforms, and
(b) that APTA can be effectively applied to such a platform.

To summarize, we make the following major contributions:

1) We identify sufficient conditions on the platform that
enable precise and efficient parametric analysis.

2) We introduce a general framework for architecture-
parametric timing analysis for any platform meeting the
conditions identified in step one.

3) We instantiate the framework for a precision-timed plat-
form and evaluate it on Mälardalen benchmarks.

Minor contributions include:

1) A black-box WCET analysis for the PTARM based on
OTAWA, an open toolbox for WCET analysis.

2) Algorithms to manipulate piece-wise linear functions.

II. BACKGROUND: PARAMETRIC LINEAR PROGRAMMING

Linear programming is a mathematical method to determine
the minimal (or maximal) value of a linear objective function
under a set of linear constraints. Parametric linear programming
(PLP) is an extension of linear programming in which the linear
constraints defining the problem contain parameters. Parametric
linear programming algorithms determine the minimal value of
the linear objective function in terms of the parameters of the
problem. The PLP problems that occur in this paper can be
written in the following canonical form, which is a simplified
form of the one considered by Feautrier [6]:

F (z) = min
x
cT · x,

s.t. Ax+Bz ≥ d,
x ≥ 0,

where z = (z1, . . . , zn) is a vector of real-valued parameters,
x is a vector of real-valued variables, A and B are matrices
of integer-valued coefficients, c, and d are vectors of integer-
valued coefficients, and 0 is the null vector (0, . . . , 0).

For some or all parameter values the constraints may have
no solutions. For convenience, we define the minimum over the
empty set to be∞. Thus, F : V al→ (R∪{∞}) assigns a value
to every valuation σ ∈ V al = Rn of the parameters z1, . . . , zn.

Feautrier [6] has generalized the Simplex algorithm [7] to
determine a closed-form expression φ with JφK = F . In fact,
the algorithm described in [6] and implemented in the library
PIPLIB can also cope with integer variables and determine
lexico-minimal solutions. Yet, the above form is sufficient for
the problems considered in this paper. Closed-form solutions
determined by the algorithm in [6] are called Affine Selection
Trees (AST) and adhere to the following grammar:

AST ::= ∞ | −∞ | LINEARCOMB. |
UNDEFINED |
(LINEARCONST. ? AST : AST)

LINEARCONST. ::= LINEARCOMB. ≥ 0

LINEARCOMB. ::= RATIONAL | RATIONAL·VARIABLE |
LINEARCOMB. + LINEARCOMB.

VARIABLE ::= z1 | z2 | . . .

An example AST would be (z1 > 0 ? 3·z1+5/2·z2 : ∞). We
will use φ and ψ as metavariables for ASTs, c as a metavari-
able for linear constraints, l,m as metavariables for linear
combinations, and r as a metavariable for rational numbers.

An Affine Selection Tree φ represents a function, denoted
by JφK, with JφK : V al→ (R ∪ {∞}), in the expected way:

Jr·ziKσ := r · σi
Jl +mKσ := JlKσ + JmKσ

J(l ≥ 0 ? φ : ψ)Kσ :=

{
JφKσ : if JlKσ ≥ 0

JψKσ : otherwise
. . .

where σ = (σ1, . . . , σn).

For the example AST and the valuation σ = (3, 2) we get
J(z1 > 0 ? 3 · z1 + 5/2 · z2 : ∞)Kσ = J3 · z1 + 5/2 · z2Kσ =
J3 · z1Kσ + J5/2 · z2Kσ = 9 + 5 = 14.

III. PARAMETERIZED TIMING MODELS

A. Formalization of Timing Models

WCET analysis requires detailed models of a microarchi-
tecture’s timing. A timing model M assigns an execution
time ETP,i ∈ R≥0 to a program P under input i1. In current
microarchitectures, the execution time of a program may vary
depending on the state of the hardware. For a timing model to be
sound for a given microarchitecture, the hardware’s execution
times on any program and input must be bounded from above
by the respective execution time assigned by the timing model.
This is required for the derived WCET bounds to be sound.

Architecture-parametric timing analysis requires param-
eterized timing models. In a parameterized timing model,
execution times additionally depend on parameters. Thus, a
parameterized timing model M assigns an execution time
ETP,i(π1, . . . , πm) ∈ R≥0 to a program P under input i and
parameter valuation (π1, . . . , πm) ∈ Rm≥0. Parameters may
determine the latencies of classes of instructions, the sizes
and access latencies of different memories, such as scratchpads
or caches, the latencies of input/output operations, etc.

Traditional WCET analysis is based on unparameterized
timing models of particular hardware implementations of ISAs.
It determines bounds on the execution time of a program under
all legal inputs I , i.e., bounds on its worst-case execution time:

WCETP := max
i∈I

ETP,i.

Parameterized timing models induce a parametric WCET:

WCETP (π1, . . . , πm) := max
i∈I

ETP,i(π1, . . . , πm)

The goal of parametric timing analysis is to compute an
expression φ that bounds the WCET of a program in terms of
the parameters of a timing model:

∀(π1, . . . , πm) ∈ Rm≥0 :

WCETP (π1, . . . , πm) ≤ JφK(π1, . . . , πm).

Such a formula should both be precise, i.e., it should be close
to the actual WCET, and it should be efficiently evaluable, i.e.,
a large SMT formula that still needs to be solved would not
be an adequate solution.

B. Sufficient Conditions for Precise and Efficient Analysis

Precise and efficient parametric timing analysis is not
possible for arbitrary parameterized timing models. It becomes
feasible only if we restrict in some way how execution times
may depend on parameters. We have identified two kinds of
parameters that admit parametric analysis:

1) Linear parameters, where part of the execution time
depends linearly on each parameter. We denote linear
parameters by λ1, λ2, . . . ∈ R≥0.

2) Monotone parameters, where part of the execution time
is monotone in the value of the parameter. We denote
monotone parameters by µ1, µ2, . . . ∈ R≥0.

We define parameterized timing models with linear pa-
rameters λ1, . . . , λm to be timing models that can be written

1We assume that programs of interest terminate under all considered inputs.

in the following way as a linear combination of functions
fj(P, i) ∈ R≥0 that capture how often different events occur
during execution:

ETP,i(λ1, . . . , λm) =

m∑
j=1

λj · fj(P, i).

Linear parameters can model properties such as the latencies
of the different levels of a memory hierarchy, bus transmission
delays, and the processor’s cycle time, i.e., the inverse of its
frequency. For these examples, the frequency functions fj(P, i)
would determine the number of accesses to the different levels
of the memory hierarchy, the number of bus transmissions,
and the number of instructions being executed, respectively.

The frequencies, e.g., the number of accesses to the scratch-
pad memory or to main memory, may in turn depend on the
scratchpad’s size, which can be modeled by a monotone parame-
ter. Thus, we allow each of the frequency functions fj to depend
on one or more monotone parameters. This leads to parameter-
ized timing models that can be decomposed in the following
way, where all fj are monotone or antimonotone in µ1, . . . , µn:

ETP,i(λ1, . . . , λm, µ1, . . . , µn) =
m∑
j=1

λj · fj(P, i, µ1, . . . , µn) (1)

For example, in a memory hierarchy, µl may determine the
size of the lth memory, fl(P, i, . . . , µl, . . .) the number of
accesses to the lth memory, and λl the memory’s latency.

In the following, we develop a parametric timing analysis
method for any timing model that can be decomposed into
monotone functions fj as in Equation (1). For simplicity but
w.l.o.g., we assume the frequency functions to be antimonotone
in their parameters, i.e., the frequencies decrease with
increasing parameter values, which is natural if parameters
encode sizes of memories such as caches or scratchpads.

C. Properties of Parameterized Timing Models

Our analysis approach makes use of a number of properties
of such timing models that we discuss in the following. For a
timing model M with linear parameters only, ETP,i : Rm≥0 →
R≥0 is a linear map. Therefore it can be represented by the
images of any set of parameter vectors that forms a spanning
set of the parameter vector space. For example:

ETP,i(λ1, λ2) = λ1ETP,i(1, 0) + λ2ETP,i(0, 1) (2)
= λ1ETP,i(1, 1) + (λ2 − λ1)ETP,i(0, 1) (3)

Both {(1, 0), (0, 1)} and {(1, 1), (0, 1)} are spanning sets of
the vector space R2

≥0.

For 1 ≤ j ≤ k, let (λj1, . . . , λ
j
m) ∈ Rm be parameter

vectors, and wj ∈ R be weights. Then, ETP,i(λ1, . . . , λm) can
be approximated from above as follows:

ETP,i(λ1, . . . , λm) ≤
k∑
j=1

wjETP,i(λ
j
1, . . . , λ

j
m), (4)

if λi ≤
∑k
j=1 wjλ

j
i for all i, 1 ≤ i ≤ m.

As an example, consider a timing model with two linear pa-
rameters that encode the cache latency and the main memory la-
tency, respectively. Then, ETP,i(1, 100) = 1·ETP,i(1, 0)+100·
ETP,i(0, 1) and ETP,i(1, 100) ≤ 10 ·ETP,i(5, 10), as 1 and 100
are less than or equal to 10 ·5 and 10 ·10, respectively. In other
words, if the execution time assuming a cache latency of 5 and
a main memory latency of 10 is ETP,i(5, 10), then we can ap-
proximate the execution time ETP,i(1, 100) for a cache latency
of 1 and a main memory latency of 100 by 10 · ETP,i(5, 10).

While WCETP itself is not necessarily a linear map, it can
still be approximated in a similar way:

WCETP (λ1, . . . , λm)
Def.

WCETP= max
i∈I

ETP,i(λ1, . . . , λm) (5)
Inequation

(4)
≤ max

i∈I

k∑
j=1

wjETP,i(λ
j
1, . . . , λ

j
m) (6)

∀j.wj≥0
≤

k∑
j=1

wj max
i∈I

ETP,i(λ
j
1, . . . , λ

j
m) (7)

Def.
WCETP=

k∑
j=1

wjWCETP (λ
j
1, . . . , λ

j
m) (8)

if λi ≤
∑k
j=1 wjλ

j
i for all i, 1 ≤ i ≤ m and wj ≥ 0 for

all j, 1 ≤ j ≤ k.

The main difference here is that all weights wj need to be
non-negative (Inequation 7). Intuitively, as WCETs are upper
bounds on execution times, we cannot subtract them from each
other, and still be sure to obtain upper bounds on the WCET
for other parameter values.

For timing models with antimonotone parameters we have:

ETP,i(µ1, . . . , µn) ≤ ETP,i(µ′1, . . . , µ
′
n), (9)

WCETP (µ1, . . . , µn) ≤ WCETP (µ′1, . . . , µ
′
n), (10)

if µi ≥ µ′i for all i, 1 ≤ i ≤ n.

Finally, timing models that have both linear and monotone
parameters have the following property which follows from
Equations (5)-(8) and Inequation (10):

Theorem 1 (WCET Bounds based on WCET Samples):

WCETP (λ1, . . . , λm, µ1, . . . , µn)

≤
k∑
j=1

wjWCETP (λ
j
1, . . . , λ

j
m, µ

j
1, . . . , µ

j
n),

(11)

if the weights wj are non-negative, λi ≤
∑k
j=1 wjλ

j
i , and

µi ≥ µji for all i and j.

This theorem shows how the WCET for parameter valuation
λ1, . . . , λm, µ1, . . . , µn can be bounded using the WCETs for
other parameter valuations.

IV. FROM SAMPLES TO PARAMETRIC WCET BOUNDS:
HOW TO GENERALIZE FROM EXAMPLES

Theorem 1 shows how to bound the WCET for any
parameter valuation using WCETs for a set of parameter
valuations. While the theorem is in terms of the actual WCETs,
the black-box WCET analysis, modeled by the function BBP ,
will in general only compute upper approximations of these.

In the following, let λ denote λ1, . . . , λm and let µ denote
µ1, . . . , µn. A black-box WCET analysis BBP is sound, if

∀λ,µ : WCETP (λ,µ) ≤ BBP (λ,µ).

Inequation (11) also holds for such approximations, and we get:

WCETP (λ,µ) ≤
k∑
j=1

wjBBP (λj ,µj), (12)

if the weights wj are non-negative, λi ≤
∑k
j=1 wjλ

j
i , and

µi ≥ µji for all i and j.

Given a set of black-box samples S = {(ej , (λj ,µj)) |
∀j : 1 ≤ j ≤ |S|, ej = BBP (λj ,µj)} there may
be several ways of bounding WCETP (λ,µ) using Inequa-
tion (12). Consider for example the set of samples S =
{(5, (1, 0)), (3, (0, 1)), (7, (1, 1))}, where both parameters are
linear. Again, the two parameters in this example might model
cache and main memory latencies. Then, the sample (5, (1, 0))
indicates that at most 5 cache hits may occur during any
program execution. Similarly, (3, (0, 1)) indicates that at most
3 accesses to main memory may occur. However, the maxima
for the two parameters might not occur on the same path
through the program, and so it is possible that any program
path contains at most 7 memory accesses (cache plus main
memory), as indicated by the third sample (7, (1, 1)). Then,
WCETP (1, 10) can be bounded by 1 · 5 + 10 · 3 = 35 because
1 · (1, 0) + 10 · (0, 1) ≥ (1, 10), but it can also be bounded by
1 · 7 + 9 · 3 = 34 because 1 · (1, 1) + 9 · (0, 1) ≥ (1, 10).

Naturally, the goal is to compute the best bound possible
given the set of samples. The best bound UBS(λ,µ) of the
WCET in terms of the parameters λ and µ for the set of
samples S is determined by the following parametric program:

UBS(λ,µ) := min
w

|S|∑
j=1

wjej ,

s.t. ∀i : λi ≤
|S|∑
j=1

wjλ
j
i ,

∀j : wj ≥ 0,

∀j : (∃i : µi < µji)→ wj = 0,

(13)

where λ = λ1, . . . , λm and µ = µ1, . . . , µn are parameters for
all i, and wj are variables for 1 ≤ j ≤ |S|.

The constraints of the parametric program correspond to
the conditions of Inequation (12), and the objective function
corresponds to the bound. So the program determines weights
that meets the constraints while minimizing the bound.

Without the final constraint on the monotone parameters
this is a parametric linear program that can be solved using
PIPLIB [6]. A naive approach to resolve this obstacle is to
construct a parametric linear program for every subset S′ of
the set of WCET samples S, and to symbolically compute
the minimum of the analysis results of all programs. These
subsets correspond to all possible choices of permitting positive
weights wj . For each such subset S′, one can fix wj = 0 if
si 6∈ S′. Then, the final constraint on the monotone parameters,
either becomes trivially true and can be eliminated, or can be
simplified to ∀j, i : µi ≥ µji , and we arrive at a parametric
linear program (PLP).

We can do better, as some subsets are dominated by others.
Consider two subsets S′ and S′′ of S. If maxsk∈S′ µkj =
maxsk∈S′′ µkj for all j, then the PLP for S′∪S′′ will impose the
same constraints on the monotone parameters as the PLPs for
S′ and S′′, but it will be less constrained w.r.t. the weights wj .
Thus, the solution, φS′∪S′′ for S′∪S′′ will be less than or equal
to the solutions for both S′ and S′′, i.e., JφS′∪S′′K(λ,µ) ≤
min{JφS′K(λ,µ), JφS′′K(λ,µ)} for all λ,µ. Thus, we only
consider the following set S of subsets of S:

S = {S′ ⊆ S | ∀si ∈ S \ S′ : ∃j s.t. µij > max
sk∈S′

µkj }.

There can be at most |S|m such subsets, where m is the number
of monotone parameters, which may be considerably fewer
than the 2|S| subsets of S.

Algorithm 1 shows the resulting parametric timing analysis
algorithm. The algorithm successively constructs and solves
PLPs for all elements of S following Equation 13. It incremen-
tally computes an affine selection tree (AST) representing the
pointwise minimum of the functions represented by the ASTs
for each element of S . As the symbolic minimum algorithm min,
discussed below, may incur a quadratic blow-up in the size of
the AST, a reduction operation reduce, also discussed below,
is required to keep the AST compact.

a) Symbolic Computation of Pointwise Minima: Given
two ASTs φ and ψ, the following recursive procedure
computes an AST min(φ, ψ), such that Jmin(φ, ψ)Kσ =
min{JφKσ, JψKσ} for all valuations σ:

min((c ? φ1 : φ2), ψ) = (c ? min(φ1, ψ) : min(φ2, ψ))
min(φ, (c ? ψ1 : ψ2)) = (c ? min(φ, ψ1) : min(φ, ψ2))

min(φ,∞) = φ

min(∞, ψ) = ψ

min(l,m) = (l −m ≥ 0 ? m : l)

b) Reduction of Affine Selection Trees: The algorithm
described above may incur a quadratic blow-up in the size
of the AST. To counter this blowup, we have devised the
following algorithm, which reduces the size of an AST without
changing the function it represents. It does so by identifying
paths through the AST that correspond to unsatisfiable sets of
constraints, and by identifying subtrees that are syntactically
equal. The second parameter of reduce is used to collect all
the constraints on the path from the root.

reduce(φ) = reduce(φ,
∧

x∈{λ,µ}

x ≥ 0)

reduce(∞, p) =∞
reduce(l, p) = l

reduce((c ? φ : ψ), p) =
φ′ : if p ∧ ¬c is unsatisfiable ∨ φ′ = ψ′

ψ′ : if p ∧ c is unsatisfiable
(c ? φ′ : ψ′) : otherwise

where φ′ = reduce(φ, p ∧ c) and ψ′ = reduce(ψ, p ∧ ¬c).
All parameters are assumed to be greater or equal to zero,
which explains the first line. We check the satisfiability of the
linear-arithmetic constraints using YICES [8]. For efficiency
our implementation actually intertwines min and reduce.

Algorithm 1: Parametric WCET Bounds
Input: Set of WCET Samples S.
Output: Parametric upper bound on the WCET as an

Affine Selection Tree φ with JφK = UBS .
1 begin
2 φ←∞
3 S ← {S′ ⊆ S | ∀si ∈ S \ S′ :
4 ∃j s.t. µij > maxsk∈S′ µkj }
5 foreach T ∈ S do
6 PT ← construct-parametric-linear-program(T)
7 φT ← solve(PT) //call of PIPLIB library
8 φ← reduce(min(φ, φT))

9 return φ

V. PARAMETRIC WCET BOUNDS WITH
PRECISION GUARANTEES

A. Problem Formulation

In the previous section we have seen how to soundly
generalize a set of samples S to a parametric WCET bound
UBS . However, the precision of the obtained parametric bound
depends strongly on the given set of samples. In this section,
we tackle the problem of obtaining a set of samples S, such that
the resulting parametric WCET bound UBS is provably precise.
Ideally, we would like to determine a small set S such that

∀λ,µ : WCETP (λ,µ) ≤ UBS(λ,µ) = BBP (λ,µ).

Such a set would yield a perfectly precise parametric bound
with no overestimation relative to the black box. However,
for an arbitrary black box this may require an infinite set of
samples S. Therefore, we introduce a parameter ε ∈ R>0 and
ask for a set of samples S, such that

∀λ,µ : WCETP (λ,µ) ≤ UBS(λ,µ) < BBP (λ,µ) + ε. (14)

In other words, we are asking for a set of samples, such that
the induced parametric bound never overestimates the black
box ε or more.

While a finite such set exists if BBP has a finite number of
discontinuities, we have no way of locating these discontinuities
exactly by sampling BBP if the monotone parameters are from
a continuous domain. By definition BBP is continuous in the
linear parameters λ, but it may be arbitrarily discontinuous
in µ. Therefore, to make the problem solvable, we introduce a
second parameter τ ∈ Rn>0. The goal is then to find a set of
samples S, such that

∀λ ∈ Rm≥0,µ ∈ Rn≥0,λ ≤ λmax,µ ≤ µmax :

WCETP (λ,µ) ≤ UBS(λ,µ) < BBP (λ,µ− τ) + ε, (15)

where λmax and µmax are platform-defined maximal values
for its parameters. Note that the parameter τ must be strictly
positive. This way it is sufficient to find parameter valuations
to sample that are within a distance of τ of discontinuities.

B. Refinement Approach

We follow a refinement approach, in which the sought-after
set of samples S is constructed incrementally.

Given an assumption about the black box that we will detail
in the following section, in addition to upper bounds, we can

Algorithm 1:
Parametric

WCET
Bounds

Parameter
Valuation

Parameter
Valuation

Parameter
Valuation

Parameter
Valuation

Parameter
Valuation

WCET

WCET

WCET

WCET

WCET

Black-Box
WCET

Analysis Algorithm 2:
Parametric

Lower
Bounds

Parametric
WCET
Bound

Software
Binary

Parametric
Lower

Bound on
BB

Difference SubtractLess than
epsilon?

Return
Parametric

WCET
Bound

Violating
Parameter
Valuation

Fig. 2. Refinement flow for architecture-parametric timing analysis.

also determine lower bounds LBS on the black box based on
a set of samples S, such that

∀λ,µ : LBS(λ,µ) ≤ BBP (λ,µ). (16)

Thus, if UBS(λ,µ) < LBS(λ,µ− τ) + ε then UBS(λ,µ) <
BBP (λ,µ− τ) + ε follows. So, the goal is to construct a set
of samples S, such that

∀λ ∈ Rm≥0,µ ∈ Rn≥0,λ ≤ λmax,µ ≤ µmax :

UBS(λ,µ) < LBS(λ,µ− τ) + ε. (17)

Such a set S also satisfies Equation (15).

Starting with an arbitrary set of samples S, we incrementally
add samples in the following way, illustrated in Figure 2:

1) We determine a parameter valuation (λ,µ) that maximizes
UBS(λ,µ+ τ

2)−LBS(λ,µ− τ
2). Note, that the maximal

difference is equal to the maximal difference between
UBS(λ,µ) and LBS(λ,µ− τ).

2) If the difference between upper and lower bound is less
than ε, we terminate, and S satisfies Equation (15).

3) Otherwise, we add (BBP (λ,µ), (λ,µ)) to S and continue
with step 1.

After adding (BBP (λ,µ), (λ,µ)) to S, the lower and upper
bounds coincide with the black box at (λ,µ): LBS(λ,µ) =
UBS(λ,µ) = BBP (λ,µ). Also, it can be shown that in a
neighborhood around (λ,µ), the lower and upper bounds differ
by less than ε. Thus, after adding (BBP (λ,µ), (λ,µ)) to S, no
valuation in its neighborhood will have to be sampled anymore.
This guarantees termination.

Before describing the refinement algorithm in more detail,
let us explain how to obtain lower bounds on the black box.

C. Computing Lower Bounds on the Black Box

To compute lower bounds on the black box, we make the
assumption that the black box is reasonable. In order to formally
define what it means for a black box to be reasonable, first
consider the following definition of redundancy of samples:

Definition 1 (Strict Redundancy of Samples): A sample
(e, (λ,µ)) is strictly redundant w.r.t. to a set of samples S if
UBS(λ,µ) < e. We call a set of samples S strictly redundant
if there is a sample s ∈ S that is strictly redundant w.r.t. S.

Algorithm 2: Parametric Lower Bounds on Black Box
Input: Set of WCET Samples S.
Output: Parametric lower bound on black box as an

Affine Selection Tree φ with JφK = LBS(λ,µ).
1 begin
2 φ← 0
3 foreach s′ ∈ S do
4 //following Equation (18):
5 PS,s′ ← construct-param.-linear-program(S, s′)
6 φS,s′ ← solve(PS,s′) //call of PIPLIB library
7 φS,s′ ← φS,s′ [UNDEFINED 7→ −∞]
8 φ← reduce(max(φ, φS,s′))

9 return φ

In other words, a better estimate of WCET(λ,µ) than e can
be derived based on the samples in S.

As an example, consider again the scenario of two lin-
ear parameters, modeling the latencies of the cache and
the main memory, respectively. The set of samples S =
{(5, (1, 0)), (3, (0, 1)), (9, (1, 1))} is strictly redundant, as the
third sample (9, (1, 1)) is strictly redundant w.r.t. to first two
samples: the upper bound UBS(λ1, λ2) is 5 ·λ1 +3 ·λ2, based
only on the first two samples. UBS(1, 1) = 8 yields a better
bound on WCET(1, 1) than the third sample.

We consider a black box to be reasonable, if it never
produces strictly redundant sets of samples:

Definition 2 (Reasonable Black Box): A black box BB is
reasonable if there is no program P and set of parameter
valuations V such that S = {(BBP (λ,µ), (λ,µ)) | (λ,µ) ∈
V } is strictly redundant.

Reasonable black boxes allow us to derive lower bounds
from the samples that we have already made: for each parameter
valuation we can determine the smallest possible value that
would not make any existing sample redundant. The following
formula determines the lowest value e for a given parameter
valuation that does not make the sample (e′, (λ′,µ′)) ∈ S
redundant w.r.t. S ∪ {(e, (λ,µ))}:

LBS,(e′,(λ′,µ′))(λ,µ) :=min
e

e,

s.t. e′ ≤ UBS∪{(e,(λ,µ))}(λ′,µ′).

Each sample (e′, (λ′,µ′)) ∈ S thus gives rise to a lower bound
on the black box. These lower bounds can be combined to
arrive at LBS(λ,µ), the smallest value that does not make any
sample in S redundant:

LBS(λ,µ) := max
(e′,(λ′,µ′))∈S

LBS,(e′,(λ′,µ′))(λ,µ).

Given an AST φS,s for each s ∈ S that represents LBS,s,
i.e., JφS,sK = LBS,s, we can compute an AST φ that represents
LBS by symbolically computing the pointwise maximum of
all φS,s. This can be done analogously to the computation of
pointwise minima discussed in Section IV.

How do we compute the AST φS,(e′,(λ′,µ′))? First, note
that if µ′ 6≥ µ, then LBS,(e′,(λ′,µ′))(λ,µ) = −∞, because
then UBS∪{(e,(λ,µ))}(λ′,µ′) is independent of e.

Now, consider the case that µ′ ≥ µ. Observe that
UBS∪{(e,(λ,µ))} is monotone and continuous in e. Thus:

LBS,(e′,(λ′,µ′))(λ,µ) :=min
e

e,

s.t. e′ ≤ UBS∪{(e,(λ,µ))}(λ′,µ′)
=max

e
e,

s.t. UBS∪{(e,(λ,µ))}(λ′,µ′) ≤ e′

By plugging Program 13 for UBS into the formula for
LBS,(e′,(λ′,µ′)) and soundly eliminating the inner minimum,
we arrive at the following parametric program:
LBS,(e′,(λ′,µ′))(λ,µ) := max

e,w,w
e,

s.t. w·e+
|S|∑
j=1

wj ·ej ≤ e′,

∀i : λ′i ≤ w·λi +
|S|∑
j=1

wj ·λji ,

w ≥ 0,∀j : wj ≥ 0,

∀j : (∃i : µ′i < µji)→ wj = 0,

(∃i : µ′i < µi)→ w = 0.
(18)

The parameters of this program are λ = λ1, . . . , λm and µ =
µ1, . . . , µn, while e, w, and w = w1, . . . , w|S| are variables.
Finally, for all i and j, λji , µ

j
i and λ′i, µ

′
i are constants defined

by the set of samples S and (e′, (λ′,µ′)).

Depending on the values of the constants µ′i and µji , the
second to last constraint ∀j : (∃i : µ′i < µji) → wj = 0
can either be eliminated or simplified to wj = 0. Due to our
assumption that µ′ ≥ µ, the last constraint can be sharpened
to µ′ ≥ µ ≡ ∀i : µ′i ≥ µi.

After these simplifications, all constraints are linear and the
program can be solved using PIPLIB. Algorithm 2 shows the
procedure to compute parametric lower bounds on reasonable
black boxes. The AST computed in line 6 is UNDEFINED for
µ′ 6≥ µ due to the final constraint discussed in the previous
paragraph. In these cases, LBS,(e′,(λ′,µ′))(λ,µ) = −∞. Thus,
in line 7 undefined portions of φS,s′ are modified to −∞. The
algorithm to compute pointwise minima of ASTs described in
Section IV can easily be adapted to compute pointwise maxima,
used in line 8 of the algorithm.

We have shown how to compute lower bounds on the black
box provided the black box is reasonable. This may appear
to be a restriction, however, it really is not, for two reasons:
1. We believe that most black boxes are naturally reasonable.
This is the case for the WCET analysis of the parameterized
PTARM, which we discuss in Section VI-C. 2. Non-reasonable
black boxes can be wrapped in a “reasonabilizer” that returns
the minimum of the non-reasonable black box BB(λ,µ) and
UBS(λ,µ), where S is the set of parameter valuations that
have been sampled before.

D. Putting It All Together

Algorithm 3 combines the algorithms to compute upper and
lower bounds to successively generate a set of samples S and
an AST φ with JφK = UBS that satisfy Equation (15).

Algorithm 3: Parametric Timing Analysis with Precision
Guarantees

Input: Reasonable Black Box WCET Analysis BB.
Bounds on parameter values λmax ∈ Rm≥0,µmax ∈ Rn≥0.
Precision requirements τ ∈ Rn>0, ε ∈ R>0.
Output: Parametric WCET bound as an AST φ and set

of samples S, such that JφK = UBS , and

∀λ ∈ Rm≥0,µ ∈ Rn≥0,λ ≤ λmax,µ ≤ µmax :

WCETP (λ,µ) ≤ UBS(λ,µ) < BBP (λ,µ− τ) + ε.

1 begin
2 V ← {(1,0), (1,µmax)

3 | 1 =

m︷ ︸︸ ︷
(1, . . . , 1),0 =

n︷ ︸︸ ︷
(0, . . . , 0)}

4 S ← {(BB(σ), σ) | σ ∈ V }
5 τ ′ ← τloose
6 ε′ ← εloose
7 while ε′ ≥ ε do
8 while τ ′ ≥ τ do
9 for i← 1; i ≤ n; i← i+ 1 do

10 while true do
11 φ← compute-upper-bound(S)
12 φ← compute-lower-bound(S)
13 φdiff ← sub(trans(φ, τ

′

2), trans(φ, −τ
′

2))
14 (δ, (λδ,µδ)) ← max(φdiff, λmax, µmax)
15 if δ > ε′ then
16 S ← S ∪ {(BB(λδ,µδ), (λδ,µδ))}
17 else
18 break

19 τ ′i ← 1
2 ·τ
′
i

20 ε′ ← 1
2 ·ε
′

21 return S, φ

The algorithm follows the refinement approach sketched
in Section V-B. It starts by sampling the black box at the
two parameter valuations (1,0) and (1,µmax), where 1 =
(1, . . . , 1),0 = (0, . . . , 0) in line 4. These two samples are
sufficient to derive finite upper and lower bounds on the black
box for all considered parameter valuations.

The outer loop starts with loose precision requirements τ ′
and ε′ (line 5-6), which are strengthened by a factor of two
in each iteration (line 19 and line 20, respectively), until they
reach τ and ε. This implicitly results in a binary search for
discontinuities in the black box.

For the given requirement on τ ′, the inner loop successively
samples the black box at the parameter valuations that maximize
the difference between upper and lower bounds until they
differ by at most ε: an AST φdiff representing UBS(λ,µ +
τ ′

2) − LBS(λ,µ − τ ′

2) is computed in line 13. This is done
using the two operations sub and trans, which compute the
difference between two ASTs and the translation of a given
AST, respectively. In line 14, the operation max determines the
parameter valuation (λδ,µδ) that maximizes φdiff and the value
δ that φdiff assumes on this valuation. The implementations of
sub, trans, and max are explained in the appendix.

By construction, if the algorithm terminates, φ satisfies the
precision requirements. It remains to argue why Algorithm 3

always terminates. Intuitively, this is because after sampling
the black box at a particular parameter valuation (λ,µ) the
algorithm will never have to sample the black box again in a
neighborhood of (λ,µ). This is shown in the following theorem:

Theorem 2 (Sampling Density, Lin. and Mon. Parameters):
For every ε ∈ R>0, every τ ∈ Rm>0 and every reasonable
black box BB, there exists a δ ∈ R>0, such that for all
λ,λ′ ∈ Rm≥0,µ,µ′ ∈ Rn≥0 :

UB{(λ,µ),(1,0)}(λ′,µ′+
τ

2
)−LB{(λ,µ),(1,0)}(λ′,µ′−

τ

2
) ≤ ε

if ‖λ′ − λ‖∞ ≤ δ and µ− τ
2
≤ µ′ ≤ µ+

τ

2
.

Here, ‖λ‖∞ is the maximum norm, i.e. ‖λ‖∞ =
max{|λ1|, . . . , |λm|}. For space reasons, the proof of the
theorem can be found in the appendix. Using Theorem 2,
it is easy to show that Algorithm 3 terminates:

Theorem 3 (Total Correctness of Algorithm 3):
Algorithm 3 terminates on all inputs and returns a set
of samples S that satisfies Equation (15).

Proof: By Theorem 2, Algorithm 3 will not add samples
that are closer than (δ, τ2) to previous samples. As the param-
eters are bounded, it can only do so a finite number of times.
Thus it must eventually terminate. Its outputs are guaranteed
to be correct due to the exit condition within the inner loop.

VI. A PRECISION-TIMED PLATFORM AND ITS BLACK-BOX
WCET ANALYSIS

A. Precision-Timed ARM: A Predictable Microarchitecture

The PTARM [5] is a realization of a precision-timed [9]
machine, a microarchitecture designed for predictable and
repeatable performance. PTARM implements a subset of the
ARMv4 ISA. In contrast to conventional architectures that
use complex pipelines and speculation techniques to improve
performance, which lead to non-predictable and non-repeatable
timing, PTARM improves performance through predictable
and repeatable hardware techniques. These include a thread-
interleaved pipeline, scratchpad memories instead of caches,
and a novel predictable DRAM controller [10].

B. A Parameterized Timing Model for the PTARM
The PTARM presented in [5] is unparameterized, i.e., the

latencies of all instructions are fixed. However, there are several
natural candidates for parameters:

• The latency of arithmetic and branch instructions, λarithmetic,
determined by the processor frequency.

• The latencies of loads and stores to scratchpad, λSPM,
determined by the type and speed of memory employed.

• The sizes of the instruction and data scratchpads, µI-SPM-Size
and µD-SPM-Size, which determine whether a memory access
reaches the scratchpad or the DRAM.

• The latencies of loads, λDRAM, and stores, λDRAM-Store,
to DRAM, determined by the DRAM chip and the
configuration of the memory controller.

With the above parameters, we have parameterized the
latencies given in [5] to those found in Table I. The param-
eters µI-SPM-Size and µD-SPM-Size determine whether a memory
access reaches the scratchpad or the DRAM. We have also
parameterized the PTARM simulator accordingly.

TABLE I. LATENCIES OF SELECTED PTARM INSTRUCTIONS IN TERMS
OF LINEAR PARAMETERS.

Instructions Latency
Data Processing λarithmetic
Branch λarithmetic

SPM DRAM
Load Register (offset) λSPM λDRAM
Load Register (pre/post-indexed) λarithmetic +λSPM λarithmetic +λDRAM
Store Register (all) λSPM λDRAM-Store
Load Multiple (all) Nreg·λSPM Nreg·λDRAM
Store Multiple (all) Nreg·λSPM Nreg·λDRAM-Store
Nreg : This is the number of registers in the register list.

C. Black-Box WCET Analysis for the PTARM

We have adapted OTAWA [11], the open toolbox for
adaptive WCET analysis, to the parameterized PTARM de-
scribed above. We chose OTAWA as it provides an ARM
analysis frontend. Our approach is similar to the one taken by
Banerjee [12] in his WCET analysis for the PTARM. OTAWA
follows the de facto standard approach to separate timing
analysis into a low-level analysis, which determines bounds
on the execution times of basic blocks, and a path analysis,
based on integer linear programming, that combines constraints
on the possible flow of control (such as loop bounds) and the
basic-block bounds provided by the low-level analysis to obtain
a bound on the WCET of the program as a whole.

The execution time of all instructions within the PTARM
is independent of the execution history. This renders non-
parametric WCET analysis for the PTARM comparatively
easy: The execution time of each basic block is determined by
iterating over its instructions and summing up their individual
execution times. Upon memory accesses and instruction fetches,
depending on the accessed memory address, we need to account
for either the scratchpad or the DRAM latency. For instruction
accesses, this is easy, as the accessed address is available. For
data accesses, we rely on a very simple address analysis, which
is often imprecise. In case of uncertainty, we conservatively
account for a DRAM access.

A major difference between our work and Banerjee’s is
that latencies of arithmetic, branch, and memory instructions,
as well as memory sizes are controlled by parameters.As these
parameters may take arbitrary rational values, we cannot always
represent basic-block times as natural numbers. Thus, we
have replaced fixed-size integers by arbitrary-precision rational
numbers from the GNU MULTIPLE PRECISION ARITHMETIC
LIBRARY (GMP) [13] throughout the entire OTAWA toolbox.

For the path analysis, OTAWA employs LP SOLVE. We
experienced arithmetic overflow errors as LP SOLVE relies on
fixed-size number representations. Thus, we replaced LP SOLVE
by a version of PIPLIB that is internally using the GMP library
to avoid such problems.

VII. EXPERIMENTAL EVALUATION

A. Experimental Setup

We evaluate APTA on a subset of the MÄLARDALEN bench-
marks [14] listed in Table II. We had to exclude benchmarks
involving floating-point computations, divisions implemented
in software, recursion, and complex switch statements due to
OTAWA limitations.

Loop bounds were annotated based on a manual inspection
of the source code. All benchmarks were compiled using the

TABLE II. BRIEF SUMMARY OF THE BENCHMARKS.
Name Size [byte] Brief description
adpcm 26852 Adaptive pulse code modulation algorithm.
bs 4248 Binary search for the array of 15 integer elements.
bsort100 2779 Bubblesort program.
crc 5168 Cyclic redundancy check computation on 40 bytes of data.
fdct 8863 Fast Discrete Cosine Transform.
fibcall 3499 Simple iterative Fibonacci calculation, to calculate fib(30).
insertsort 3892 Insertion sort on a reversed array of size 10.
janne complex 1564 Nested loop program.
jfdctint 16028 Discrete-cosine transformation on a 8x8 pixel block.
matmult 3737 Matrix multiplication of two 20x20 matrices.
ns 10436 Search in a multi-dimensional array.
nsichneu 11835 Simulate an extended Petri Net.
qsort-exam 4535 Non-recursive version of quick sort algorithm.
statemate 52618 Automatically generated code.

GNU ARM toolchain including GCC version 4.3.2. Time
measurements were performed on an INTEL CORE I7 920
running at 2.67 GHz with 12 GB of RAM. We chose 64 KB
as the maximal value for both the instruction and the data
scratchpad memories. Linear parameters, modeling latencies,
may take any rational value between 0 and 10.

B. Evaluation Results

Our first evaluation goal is to confirm that the black-
box WCET analysis over-approximates the timing of the
parameterized PTARM, and to evaluate its precision. To this
end, we determine for each benchmark the ratio between the
black-box WCET estimate and the execution time determined
using the PTARM simulator in a single simulation run with the
inputs that are provided with the MÄLARDALEN benchmarks.
As the value analysis in the black box is very simple and thus
bound to be imprecise, we perform this comparison with all
linear parameters, including the DRAM latencies, set to 1. This
eliminates the influence of the value analysis from the results.
The results of this analysis are illustrated in Table III. For some
benchmarks the black-box estimate is very close to the simula-
tion result, yet for others the ratio is extremely large. This is due
to imprecise loop bounds and other constraints on the control
flow, and to the fact that the input exercised during simulation
does not represent the worst-case input, e.g., in the sorting tasks.

Next, we evaluate how the number of black-box WCET
samples affects the precision of the parametric analysis results
on unsampled parameter vectors. To this end, we modify
Algorithm 3 to report upper and lower bounds whenever a new
sample has been taken. This yields two ASTs, φP,i and φ

P,i
,

corresponding to the lower and upper bounds on the black box,
for each benchmark P in the set of benchmarks P and number
of samples i. Then, we sample the parameter space uniformly at
random 100 times. For each of the randomly drawn parameter
valuations (λj ,µj), we evaluate the black box BBP , and the
upper and lower bounds φP,i, φP,i, and determine their ratios:

rover
P,i,j :=

JφP,iK(λj ,µj)
BBP (λj ,µj)

and runder
P,i,j :=

Jφ
P,i

K(λj ,µj)

BBP (λj ,µj)
.

We summarize these ratios by taking their geometric means
rover
i , runder

i over all benchmarks found in Table III. In
Figure 3, we depict rover

i and runder
i for i between two2 and

26. The experiment was performed with a precision target
of (ε = 1024, τ = (0, 0))3, which ensures that an arbitrary
number of samples can be taken. We observe a strong precision

2We start at two samples, because Algorithm 3 performs two samples before
entering the refinement loop.

3Where τ refers to the monotone parameters µI-SPM-Size and µD-SPM-Size.

TABLE III. PRECISION OF THE BLACK-BOX WCET ANALYSIS.

Name Black Box (cycles) Simulator (cycles) Ratio
adpcm 9989637 1598152 6.25
bs 318 279 1.14
bsort100 998109 8293 120.36
crc 248231 116995 2.12
fdct 11262 11069 1.02
fibcall 1140 1131 1.01
insertsort 4965 2949 1.68
janne complex 4048 753 5.38
jfdctint 14016 13951 1.00
matmult 755274 745669 1.01
ns 42550 42549 1.00
nsichneu 32339 15551 2.08
qsort-exam 2132100 11125 191.65
statemate 108766 2809 38.72

2 3 4 5 6 7 8 9 1011121314151617181920212223242526
0

1

2

Number of samples

R
at

io

rover
i

runder
i

rover
i,random

Fig. 3. Ratios between upper bound and black box rover
i , rover

i,random and ratio
between lower bound and black box runder

i in terms of the number of samples i.

improvement on samples 3 to 7. After the first 7 samples, the
obtained lower bound is very close to the actual black-box
values for all benchmarks. The upper bound comes within 5%
of the black box after 16 samples for most benchmarks, which
is reflected by the geometric mean in the figure. For most
benchmarks, the algorithm chooses to sample the black box at
a different instruction scratchpad size than before, at samples
12 and 16, which yields a significant precision improvement.

As a baseline for Algorithm 3, we determine how well upper
bounds based on a random set of samples approximate the black
box. In Figure 3, rover

i,random denotes the ratio between these upper
bounds, based on i random samples, and the black box. Random
sampling yields much less precise estimates. In addition,
computation times increase dramatically, which explains why
we only perform this experiment for up to 15 samples. This
demonstrates that some form of “intelligent” sampling is
required for the black-box approach to be precise and efficient.

To evaluate analysis efficiency, we determined the analysis
time of each benchmark up to and including the ith sample.
We decompose this analysis time into three components:

1) Invocations of the black box.
2) Operations on affine selection trees, e.g. minimization.
3) Invocations of PIPLIB.

In Figure 4 we show the geometric mean of the analysis time
over all benchmarks up to the ith sample. The bars are stacked,
meaning that the top of the upper most bar reflects the overall
analysis time. As the black box is called once for each sample,
its contribution to the overall analysis time grows linearly. A
superlinear growth is observed for the other two components,
which is expected, as the problems to be solved grow with
each sample. PIPLIB’s contribution grows strongest, moving
from the smallest to the largest share of analysis time. As
observed in Figure 3, 16 samples usually result in very precise
parametric upper bounds. On our benchmarks, 16 samples are
processed in less than 2.2 seconds on the average.

10 20 30 40
0

10,000

20,000

Number of samples

A
na

ly
si

s
Ti

m
e

(i
n

m
s)

PIPLIB

AST Operations
Black Box

Fig. 4. Analysis time in terms of number of samples.

In Figure 3 we have shown how the actual precision
depends on the number of samples. Next, we determine
how many samples are required to meet a certain precision
guarantee. To this end, we determine for each benchmark
and for several precision targets (ε, (τ, τ))4 the number of
samples sP (ε, τ) that Algorithm 3 takes until termination.
We summarize these values in Figure 5. Three benchmarks,
nsichneu, adpcm, statemate, ran out of memory for
smaller values of τ . For the tightest precision requirement,
ε = 32, we report the maximum required number of samples
smax
32 (τ) = maxP∈P sP (32, τ) over all benchmarks for which

the analysis terminated successfully, for τ between 8192 and
262144. For the loosest precision requirement, ε = 1024, on
the other hand, we report the minimum required number of
samples smin

1024(τ) over all benchmarks. For ε between 32 and
1024, sP (ε, τ) is expected to lie between smin

1024(τ) and smax
32 (τ).

We also report the median number of samples smedian
256 (τ) over

all benchmarks for ε = 256. For most benchmarks, the number
of required samples is quite insensitive to ε: the median for
ε = 256 is close to the minimum for ε = 1024.

VIII. APPLICATION TO COMMERCIAL
MICROARCHITECTURES

We have applied APTA to a parameterized version of
the PTARM, a precision-timed architecture. It has been
designed with the specific goal of reconciling performance
and predictability. And indeed, as we demonstrate, precise and
efficient architecture-parametric WCET analysis is feasible for
the PTARM. Naturally, the question arises whether our approach
is also applicable to other existing academic and commercial
microarchitectures and whether a similar parameterization is
reasonable for such microarchitectures.

To answer the second question first, we believe that the pa-
rameterization of the PTARM is quite typical for both commer-
cial and research platforms: aspects that are often configurable
in single-core processors are the processor frequency, the sizes
of local memories (caches or scratchpads), and the interconnect,
affecting memory access latencies, corresponding directly to the
parameters in the PTARM. To use multi-core architectures in a
hard real-time context, most of their shared resources will have
to be partitioned (an approach promoted among others in the
MERASA and Predator projects [15], [3]) in space and/or time:
caches can be partitioned along their ways [16], buses and other
interconnect can be partitioned in time by time division multiple
access (TDMA) arbitration [17], and access to DRAM memory
can be partitioned in time [18] and space [10]. Partitioning
in space intuitively induces monotone parameters, whereas
time-based partitioning may sometimes be modeled with linear
parameters, however, caveats exist, as discussed below.

4Where (τ, τ) refers to the monotone parameters µI-SPM-Size and µD-SPM-Size.

262144 131072 65536 32768 16384 8192
0

50

100

excl. nsichneu

excl. adpcm, statemate

Precision Requirement τ

N
um

be
r

of
sa

m
pl

es

smax
32 (τ)

smedian
256 (τ)

smin
1024(τ)

Fig. 5. Number of samples required to reach precision guarantee (ε, (τ, τ)).
Some benchmarks, namely nsichneu, adpcm, statemate, ran out of
memory for ε = 32 and are thus not included in smax

32 (τ). The median and
minimum, smedian

256 (τ) and smin
1024(τ), could be determined for all values of τ .

For our approach to be applicable to a particular platform,
its parameterized timing model needs to be linear or at least
monotone in all of its parameters. This is, unfortunately, not the
case for canonical models of many complex microarchitectures.
In contrast to LRU, FIFO cache replacement is known to
suffer from Belady’s anomaly, i.e., under FIFO, increasing
the cache’s size may lead to a decrease in performance. For
platforms including such non-monotone features, monotone
parameterized timing models can be developed, however, at
the cost of a loss in precision. Alternatively, if the goal is to
find a system configuration statically, our analysis may also
be performed on timing models that are not guaranteed to be
monotone. This yields parametric WCET estimations that are
not necessarily safe. Once a system configuration has been
determined based on such an estimation, the black box can
still be used to verify whether the timing constraints can be
met. If not, the parametric WCET estimation can be refined
accordingly and the process would have to be iterated.

In addition to monotonicity, our approach requires timing to
be decomposed into contributions that can be attributed to differ-
ent components. Such a decomposition is natural for so-called
fully timing-compositional architectures [3], [19]. An example
of a fully timing-compositional commercial architecture is the
ARM7 [3]. For more complex architectures such as the Infineon
TriCore or the PowerPC 755, it is possible to create conservative
compositional models. The resulting loss in precision may, how-
ever, be substantial and depends on the particular architecture
and decomposition [19], and is a topic of ongoing research.

IX. RELATED WORK

The work most related to ours is that of Seth et al. [20] on
frequency-aware static timing analysis. They consider a scenario
in which a processor supports dynamic frequency/voltage
scaling (DVS). Prior, naive approaches to exploit DVS assumed
that the execution time would increase by a factor of c if the
frequency was scaled down by a factor of c. Seth et al. observe
that this is usually extremely pessimistic as scaling down the
core frequency does not affect memory latencies, which can
make up a large portion of a program’s execution time. To
remove this pessimism, they sketch an approach to derive
a formula that captures the WCET of a program as a linear
function of the processor’s frequency. They also show how such
a formula can be used to derive the optimal frequency to meet
all deadlines under earliest-deadline first (EDF) scheduling.
The setting considered by Seth et al. [20] can be seen as a
special case of the setting considered in this work, in which
there is exactly one linear parameter (the processor frequency)
and no monotone parameters.

There is a bulk of work on a topic termed parametric timing
analysis [21], [22], [23], [24], [25], [26], [27]. The goal of this
work is to determine how the WCET of a program depends
on its inputs. As an example, the number of loop iterations
of a matrix-multiplication routine depends on the sizes of the
matrices that are being multiplied. This is orthogonal to the
present work in which the dependence of the execution time
on architectural parameters is analyzed.

Most of the approaches to “input-parametric” timing anal-
ysis parameterize the path analysis, sometimes by applying
parametric integer linear programming rather than standard
integer linear programming (ILP). Here, we illustrate why
such approaches cannot be easily transferred to architecture-
parametric timing analysis: the standard ILP formulation for
path analysis, takes the following form:

WCET :=max
∑

b∈Basic Blocks

cb · fb,

s.t. Control-flow constraints,
∀b ∈ Basic Blocks : fb ≥ 0

(19)

where cb is a constant denoting a bound on the execution time
of basic block b, and fb is a variable encoding the frequency of
executing basic block b. In “input-parametric” timing analysis,
parameters are introduced in the control-flow constraints, e.g.,
one might add the constraint fb = 2 ·p, if fb is the loop header
of a loop that is executed two times the initial value of the input
parameter p. This yields a parametric linear program. However,
for architecture-parametric analysis, the basic-block bounds
depend on the parameters: replacing the basic-block bounds
by variables that depend on parameters immediately yields a
quadratic optimization problem, as the basic-block bounds are
multiplied with their respective execution frequencies. We are
not aware of solvers for such parametric quadratic programs.

Work on retargetable WCET analyzers [28], [29], [30], [31]
is also orthogonal to ours: its goal is to support retargeting
a WCET analyzer to a new architecture, sometimes based on
formal descriptions of a microarchitecture [31]. Retargetable
WCET analyzers may serve as black boxes in our framework.

Our algorithms rely on affine selection trees (ASTs) as a
data structure to represent piece-wise linear functions. We have
implemented multiple operations on ASTs, such as minimum,
translation, and subtraction, in a rather ad hoc fashion. In the
future, we plan to develop specialized BDD-like data structures
similar to LINAIGS [32] or LDDS [33] to more efficiently
represent and manipulate parametric linear programming results.
LINAIGS and LDDS are not directly applicable here as they
represent predicates Rn → B, rather than linear functions
Rn → R. While functions can be encoded as predicates, some
operations, such as subtraction, are non-trivial to realize on
the predicate representation.

X. DISCUSSION

We have introduced a general framework for architecture-
parametric timing analysis (APTA). To evaluate its viability
we have instantiated it for a parameterized version of the
PTARM, a precision-timed architecture. The results of our
experimental analysis are promising, and demonstrate that
precise and efficient APTA is indeed possible.

Opportunities for future work remain. Can the requirements
for APTA, in particular monotonicity, be relaxed? Many
questions arise when it comes to exploiting the results of APTA:

• How can APTA be integrated into a design-space explo-
ration that identifies an architecture that meets all timing
constraints while minimizing other aspects, such as cost
or energy consumption?

• How can scheduling algorithms be adapted to exploit
APTA results at run time to reduce energy consumption
or increase the performance of non-critical tasks?

ACKNOWLEDGEMENTS

We would like to thank Edward Lee and Helmut Seidl
for discussions on this work, and the anonymous reviewers
for their helpful remarks. This work was supported in part
by the Saarbrücken Graduate School of Computer Science,
which receives funding from the DFG as part of the Excellence
Initiative of the German Federal and State Governments, an
Intel Early Career Faculty Award, and by the NSF, award
#0720882 (CSR-EHS: PRET).

REFERENCES

[1] C. Watkins and R. Walter, “Transitioning from federated avionics
architectures to integrated modular avionics,” 26th Digital Avionic
Conference, October 2007.

[2] R. Obermaisser, C. El Salloum, B. Huber, and H. Kopetz, “From a
federated to an integrated automotive architecture,” IEEE TCAD, vol. 28,
no. 7, pp. 956–965, 2009.

[3] R. Wilhelm et al., “Memory hierarchies, pipelines, and buses for future
architectures in time-critical embedded systems,” IEEE TCAD, vol. 28,
no. 7, pp. 966–978, 2009.

[4] D. N. Bui, E. A. Lee, I. Liu, H. D. Patel, and J. Reineke, “Temporal
isolation on multiprocessing architectures,” in DAC, 2011.

[5] I. Liu et al., “A PRET microarchitecture implementation with repeatable
timing and competitive performance,” in ICCD, September 2012.

[6] P. Feautrier, “Parametric integer programming,” RAIRO Recherche
Opérationnelle, vol. 22, no. 3, pp. 243–268, 1988.

[7] G. B. Dantzig, Linear Programming and Extensions. Princeton, NJ:
Princeton University Press, 1963.

[8] B. Dutertre and L. M. de Moura, “A fast linear-arithmetic solver for
DPLL(T),” in CAV, 2006, pp. 81–94.

[9] S. A. Edwards and E. A. Lee, “The case for the precision timed (PRET)
machine,” in DAC, 2007, pp. 264–265.

[10] J. Reineke et al., “PRET DRAM controller: Bank privatization for
predictability and temporal isolation,” in CODES+ISSS. ACM, 2011,
pp. 99–108.

[11] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “OTAWA: an
open toolbox for adaptive WCET analysis,” in SEUS, 2010, pp. 35–46.

[12] S. Banerjee, “Timing analysis for the precision timed ARM processor,”
University of Kiel, Tech. Rep. 1212, September 2012.

[13] T. Granlund et al. The GNU multiple precision arithmetic library.
[14] J. Gustafsson et al., “The Mälardalen WCET benchmarks - past, present

and future,” in WCET, July 2010.
[15] T. Ungerer et al., “Merasa: Multicore execution of hard real-time

applications supporting analyzability,” IEEE Micro, vol. 30, no. 5, pp.
66–75, 2010.

[16] K. J. Nesbit, J. Laudon, and J. E. Smith, “Virtual private caches,”
SIGARCH Comput. Archit. News, vol. 35, no. 2, pp. 57–68, Jun. 2007.

[17] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken, “CoMPSoC:
A template for composable and predictable multi-processor system on
chips,” ACM TODAES, vol. 14, no. 1, pp. 2:1–2:24, Jan. 2009.

[18] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a predictable
SDRAM memory controller,” in CODES+ISSS, 2007, pp. 251–256.

[19] S. Hahn, J. Reineke, and R. Wilhelm, “Towards compositionality in
execution time analysis – definition and challenges,” in CRTS, 2013.

[20] K. Seth et al., “FAST: Frequency-aware static timing analysis,” ACM
TECS, vol. 5, no. 1, pp. 200–224, Feb. 2006.

[21] E. Vivancos, C. Healy, F. Mueller, and D. Whalley, “Parametric timing
analysis,” SIGPLAN Not., vol. 36, no. 8, pp. 88–93, Aug. 2001.

[22] J. Coffman, C. Healy, F. Mueller, and D. Whalley, “Generalizing
parametric timing analysis,” in LCTES. ACM, 2007, pp. 152–154.

[23] S. Altmeyer, C. Humbert, B. Lisper, and R. Wilhelm, “Parametric timing
analysis for complex architectures,” in RTCSA, 2008, pp. 367–376.

[24] S. Mohan et al., “Parametric timing analysis and its application to
dynamic voltage scaling,” ACM TECS, vol. 10, no. 2, pp. 25:1–25:34,
Jan. 2011.

[25] S. Bygde, A. Ermedahl, and B. Lisper, “An efficient algorithm for
parametric WCET calculation,” Journal of Systems Architecture, vol. 57,
no. 6, pp. 614 – 624, 2011.

[26] E. Althaus, S. Altmeyer, and R. Naujoks, “Precise and efficient
parametric path analysis,” in LCTES. ACM, 2011, pp. 141–150.

[27] B. Huber, D. Prokesch, and P. Puschner, “A formal framework for precise
parametric WCET formulas,” in WCET, 2012, pp. 91–102.

[28] M. G. Harmon, T. Baker, and D. B. Whalley, “A retargetable technique
for predicting execution time of code segments,” Real-Time Systems,
vol. 7, no. 2, pp. 159–182, 1994.

[29] K. Chen, S. Malik, and D. I. August, “Retargetable static timing analysis
for embedded software,” in ISSS. ACM, 2001, pp. 39–44.

[30] A. Colin and I. Puaut, “A modular & retargetable framework for tree-
based WCET analysis,” in ECRTS. IEEE, 2001, pp. 37–44.

[31] X. Li, A. Roychoudhury, T. Mitra, P. Mishra, and X. Cheng, “A
retargetable software timing analyzer using architecture description
language,” in ASP-DAC, Washington, DC, USA, 2007, pp. 396–401.

[32] W. Damm et al., “Automatic verification of hybrid systems with large
discrete state space,” in ATVA, vol. 4218, 2006, pp. 276–291.

[33] S. Chaki, A. Gurfinkel, and O. Strichman, “Decision diagrams for linear
arithmetic,” in FMCAD, November 2009, pp. 53–60.

APPENDIX

A. Operations on Affine Selection Trees

a) Subtraction: Given two ASTs φ and ψ, the following
recursive procedure computes an AST sub(φ, ψ), such that
Jsub(φ, ψ)Kσ = JφKσ − JψKσ for all valuations σ:

sub((c ? φ1 : φ2), ψ) = (c ? sub(φ1, ψ) : sub(φ2, ψ))
sub(φ, (c ? ψ1 : ψ2)) = (c ? sub(φ, ψ1) : sub(φ, ψ2))

sub(∞,∞) = undefined
sub(l,∞) = −∞
sub(∞, l) =∞
sub(l,m) = l −m

b) Maximization: Given an AST φ, the following
recursive procedure determines the parameter valuation (λ,µ)
that maximizes JφK(λ,µ) and the value that φ assumes on this
valuation:

max(φ,λmax,µmax) = max(φ,
∧

x∈{λ,µ}

0 ≤ x ≤ xmax)

max((l ≥ 0 ? φ : ψ), p) = max(max(φ, p ∧ l ≥ 0),

max(φ, p ∧ l ≤ 0))

max(∞, p) = (∞,⊥)

max(l, p) =
(

max l argmax l
s.t. p , s.t. p

)
The procedure collects all of the constraints on a path from the
root of the tree to each leaf. At each leaf, a linear program then

yields the maximum value and corresponding valuation of the
AST. max, defined below, is used at each inner node of the AST
to select the larger of the two tuples coming from its subtrees:

max((r1, (λ1,µ1)), (r2, (λ2,µ2))) =
(r1, (λ1,µ1)) : if r1 > r2∨

(r1 = r2 ∧ (λ1,µ1) ≤ (λ2,µ2))

(r2, (λ2,µ2)) : otherwise

c) Translation: Given an AST φ, the following re-
cursive procedure computes an AST trans(φ, σ′), such that
Jtrans(φ, σ′)Kσ = JφK(σ + σ′) for all valuations σ:

trans((l ≥ 0 ? φ : ψ), σ′) = (trans(l, σ′) ≥ 0 ?

trans(φ, σ′), trans(ψ, σ′))
trans(l, σ′) = l + JlKσ′ − JlK0

B. Termination of Parametric Analysis

The following lemma and theorem show that the neigh-
borhood of a parameter valuation that has been sampled does
not have to be sampled again, which is crucial for proving
termination of Algorithm 3.

Lemma 1 (Sampling Density, Linear Parameters): For ev-
ery ε ∈ R>0 and every reasonable black box BB, there exists
a δ ∈ R>0, such that for all λ,λ′ ∈ Rm≥0,µ ∈ Rn≥0 :

UB{(λ,µ),(1,0)}(λ′,µ)− LB{(λ,µ),(1,0)}(λ′,µ) ≤ ε
if ‖λ′ − λ‖∞ ≤ δ.

Proof: Let δ = ε
2·BB(1,0) . By construction, we have λ′ ≤

1 ·λ+‖λ′ − λ‖∞ ·1. Thus, we can apply Inequation 12 to get

UB{(λ,µ),(1,0)}(λ′,µ) ≤ 1 ·BB(λ,µ)+‖λ′ − λ‖∞ ·BB(1,0).

Similarly, we get

LB{(λ,µ),(1,0)}(λ′,µ) ≥ 1 ·BB(λ,µ)−‖λ′ − λ‖∞ ·BB(1,0).

For smaller values of LB{(λ,µ),(1,0)}(λ′,µ), the sample
(BB(λ,µ), (λ,µ)) would be redundant, contradicting the as-
sumption that the black box is reasonable. Combining the two
inequalities yields

UB{(λ,µ),(1,0)}(λ′,µ)− LB{(λ,µ),(1,0)}(λ′,µ)
≤ 2 · ‖λ′ − λ‖∞ · BB(1,0)
≤ 2 · δ · BB(1,0) = ε.

Theorem 2 (Sampling Density, Lin. and Mono. Parameters):
For every ε ∈ R>0, every τ ∈ Rm>0 and every reasonable black
box BB, there exists a δ ∈ R>0, such that for all

UB{(λ,µ),(1,0)}(λ′,µ′+
τ

2
)−LB{(λ,µ),(1,0)}(λ′,µ′−

τ

2
) ≤ ε

if ‖λ′ − λ‖∞ ≤ δ and µ− τ
2
≤ µ′ ≤ µ+

τ

2
.

Proof: Again, let δ = ε
2·BB(1,0) . By monotonicity of UB

(*) and LB, and by Lemma 1, we have:

UB{(λ,µ),(1,0)}(λ′,µ′ + τ
2)− LB{(λ,µ),(1,0)}(λ′,µ′ − τ

2)
(*)
≤ UB{(λ,µ),(1,0)}(λ′,µ)− LB{(λ,µ),(1,0)}(λ′,µ)

Lemma 1
≤ 2 · ‖λ′ − λ‖∞ · BB(1,0)
≤ 2 · δ · BB(1,0) = ε

	Introduction
	Background: Parametric Linear Programming
	Parameterized Timing Models
	Formalization of Timing Models
	Sufficient Conditions for Precise and Efficient Analysis
	Properties of Parameterized Timing Models

	From Samples to Parametric WCET Bounds:How to Generalize from Examples
	Parametric WCET Bounds withPrecision Guarantees
	Problem Formulation
	Refinement Approach
	Computing Lower Bounds on the Black Box
	Putting It All Together

	A Precision-Timed Platform and Its Black-Box WCET Analysis
	Precision-Timed ARM: A Predictable Microarchitecture
	A Parameterized Timing Model for the PTARM
	Black-Box WCET Analysis for the PTARM

	Experimental Evaluation
	Experimental Setup
	Evaluation Results

	Application to Commercial Microarchitectures
	Related Work
	Discussion
	References
	Appendix
	Operations on Affine Selection Trees
	Termination of Parametric Analysis

